Alkyl Groups Migration from Tetra-alkyl-silanes, -germanes, and -stannanes to Carbenium Ions, effected by Lewis Acids: a Novel Method for Synthesising Hydrocarbons with a **Quaternary Carbon Atom**

By Zinaida N Parnes,* Galina I Bolestova, Irene S. Akhrem, Mark E Vol'pin, and Dmitry N Kursanov (Institute of Organo-Element Compounds of the USSR Academy of Sciences, Moscow, USSR)

Summary Hydrocarbons with a quaternary carbon atom have been obtained by alkyl group transfer from group 4 tetra-alkyl derivatives to tertiary carbenium ions in the presence of Lewis acids

ORGANOSILICON hydrides in CF₃CO₂H are widely used as hydrogenation agents, particularly in the ionic hydrogenation of olefins 1 On the other hand tetra-alkyl- and tetraaryl-silanes do not react with olefins in CF₃CO₂H,² presumably because of the higher stability of the Si-C bond towards the action of electrophilic reagents compared with that of the S1-H bond

We have found that addition of a methyl group from tetramethylsilane or tetramethylstannane, and a proton from the acid, to the C=C bond proceeds when AlBr3 or AlCl₃ are added to the mixture of olefin and CF₃CO₂H in CH2Cl2 Thus, tri- and tetra-substituted ethylenes (1methylcyclohexene, 1-methylcyclopentene, $\Delta^{9,10}$ -octalin), which form tertiary carbenium ions upon protonation, undergo hydroalkylation to the saturated hydrocarbons containing a quaternary carbon atom. In this reaction AlBr₃ is more active than AlCl₃ Under optimal reaction

$$\begin{array}{c|c}
 & \text{Me}_{4}S_{1}(\text{Me}_{4}S_{1}) \\
\hline
\text{CF}_{3}CO_{2}H, \text{AIX}_{3}
\end{array}$$

$$\begin{array}{c|c}
 & \text{Me} \\
\hline
\text{Me} \\
\end{array}$$

$$\begin{array}{c|c}
 & \text{Me} \\
\end{array}$$

$$\begin{array}{c|c}
 & \text{Me} \\
\end{array}$$

$$\begin{array}{c|c}
 & \text{Me} \\
\end{array}$$

conditions (molar ratio of olefin: Me₄Si: CF₃CO₂H: AlBr₃ = 1:10:1.5:1.5, 20 °C, CH₂Cl₂) the yields of hydromethylation products reach ca 50% in 15 min

Cyclohexene, forming an unstable secondary carbenium ion upon protonation, affords only 4% of the hydroalkylation product (methylcyclohexane) along with 8% of cyclohexane and traces of 1,1-dimethylcyclohexane, methylcyclopentane, and 1,1-dimethylcyclopentane Since trifluoroacetates of tertiary alcohols can easily generate tertiary carbenium ions, they also react with Me₄Si in the presence of Lewis acids Thus, the trifluoroacetates of 1-methylcyclohexanol and 1-methylcyclopentanol yield ca 75% of 1,1-dimethylcyclohexane and 1,1-dimethylcyclopentane (trifluoroacetate: Me₄Si: AlBr₃ = 1:5:1.5, 20 °C,

Under similar conditions the trifluoroacetate of a CH₂Cl₂) secondary alcohol (cyclohexanol) gives the same products as cyclohexane

Unlike Me₄Si, however, Me₃SiBu, Me₃SiCl, and Me₃SiOSi-Me₃ do not add a methyl group to tertiary carbenium ions Methyl derivatives of germanium and tin (Me4Ge, Me4Sn, and Me₃SnCl) react with the trifluoroacetate of 1-methylcyclohexanol in the presence of AlBr₃ affording 1,1-dimethylcyclohexane in 40-75% yields The catalytic activity of Lewis acids in reactions with Me₄Sn increases in the series $MoCl_5 < WCl_6 < VOCl_3 < ZrCl_4 < AlCl_3 < TrCl_4 < AlBr_3$ It is also possible to transfer the propyl group from Pr₄Ge and Pr₄Sn and the butyl group from Bu₄Sn and Bu₄S1 in the presence of AlBr₃

The ability of saturated hydrocarbons to form tertiary carbenium ions on abstraction of hydride ion with electrophilic reagents has been employed in the methylation of methylcyclohexane and decalin by Me₄S₁ in the presence of AlBr₃ 3 In this case, the hydrogen on the tertiary carbon atom is replaced by the methyl group yielding 1,1-dimethylcyclohexane (50%) and 9-methyldecalin (35%), respectively (hydrocarbon: Me_4S_1 : $AlBr_3 = 1:10:3$, 50 °C, 3—5 h, CH₂Cl₂) The role of the Lewis acid is probably associated with both increase of the medium acidity and activation of the alkylation agent

A typical reaction, involving Me₄Si and derivatives of methylcyclohexane, is shown in the Scheme

The reactions developed could be used for the synthesis of hydrocarbons with a quaternary carbon atom from olefins, esters, and tertiary hydrocarbons

(Received, 13th May 1980; Com. 519.)

D. N. Kursanov, Z. N. Parnes, and N. M. Loim, Synthesis, 1974, 9, 201
 D. N. Kursanov, Z. N. Parnes, G. D. Kolomnikova, and I. I. Tyulyaev, Izv. Akad. Nauk SSSR, Ser. Khim., 1972, 678.

³ D. N. Kursanov, G I Bolestova, V A Kataev, and Z N Parnes, Izv Akad Nauk SSSR, Ser Khim, 1979, 1919.